
Dynamic Data-Flow
Testing

Mattia Vivanti - University of Lugano

Monday, June 16, 14

Data flow testing

public class DummyDivision {
	
	 int i;

	 public DummyDivision() {
	 	 i=1;
	 }
	
	 public void resetI(){
	 	 i=0;
	 }
	
	 public int dividePerI(int j){
	 	 return j/i;
	 }

}

definition of i

definition of i

use of i

def-use
pairs

Monday, June 16, 14

static data flow
analysis

def-use
pairs

program
under test

Data flow testing

test
cases

analyzed by

targeted by

computes

Monday, June 16, 14

static data flow
analysis

def-use
pairs

program
under test

Data flow testing

test
cases

analyzed by

targeted by

computesStatically computed data flow
information does not capture the right

information for data flow testing

Monday, June 16, 14

static data flow
analysis

def-use
pairs

Data flow testing

test
cases

targeted by

computes Conservative choices and
approximations to address

dynamic binding,
inter-procedural control flow

and scalability

Monday, June 16, 14

static data
flow analysis

misses def-use pairsinfeasible def-use pairs

Denaro et al., “On the Right Objectives of
Data Flow Testing”, ICST 2014

Frankl and Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” TSE 1993
Hutchins et al. “Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria,” ICSE 1994

if(boolean){
	 i = 1;
}
...	
if(!boolean){
	 read(i);
}	

Def i

Use i

	 Object first = ...;
	 List list = new ArrayList();
	 list.add(first);
	 list.get(0).setI(5);

Def first.iMissed

Monday, June 16, 14

Detect precise data flow information
by observing data flow events
dynamically

Incremental computation of test
targets by combining dynamic, static
analysis and testing

Dynamic Data-Flow Testing

Monday, June 16, 14

DReaDs: dynamic
reaching definitions
analysis

monitors definitions and uses
at the memory level

monitors associations
between instances to identify
nesting of states

JVMpublic class A {
 private I b;

 public void methOfA(){
	 ...
	 b = new B("msg");
 ...
 }
 ...
}

A
12345

ACTIVE Definitions
{-}

Definition EVENTS
{-}

Monday, June 16, 14

monitors definitions and uses
at the memory level

monitors associations
between instances to identify
nesting of states

JVMpublic class A {
 private I b;

 public void methOfA(){
	 ...
	 b = new B("msg");
 ...
 }
 ...
}

s

b
A

12345

B
54534

String
"msg"

ACTIVE Definitions
{B.s, A.b, A.b.s}

Definition EVENTS
{B.s in B.<init>()
A.b in A.methOfA(),

A.b.s in A.methOfA()}

DReaDs: dynamic
reaching definitions
analysis

Monday, June 16, 14

public void read(){
	 print(this.b);
 }

definitions observed at
method exit

uses observed in the
method

Test Case 1 Test Case 2

this.bDef: Use: match

Identification of
test targets

this.b

public void setup(){
	 this.b = "ciao";
 }

Monday, June 16, 14

Dynamic Data Flow Testing

DReaDs: dynamic
reaching definitions

analysis

test case
generation

test targets
inference

dynamic data flow
information for

yet-to-execute
definition use pairs for

execution traces for

initial test suite

Monday, June 16, 14

Status of Research

Denaro et al., “On the Right Objectives of Data Flow Testing”, ICST 2014

Definitions % Missed by the
other technique

Dreads 169,495 96%

DaTeC 28,929 23%

Case study: 5 Java projects, 1531 classes, 88000 eloc.

DReaDs: Dynamic Reaching Definitions Analysis
 for Java

Monday, June 16, 14

Current Work

Finalize implementation

Evaluation:
•can we discover a relevant set of definition
use pairs using dynamic data flow testing?
•how effective are generated test cases?

Monday, June 16, 14

