
Performance Analysis for
Object-Oriented Software

A Control-flow Centric Approach
!

ICSE 2014 Doctoral Symposium - David Maplesden
dmap001@aucklanduni.ac.nz

1

mailto:dmap001@aucklanduni.ac.nz

2

A ‘modern’ profiler

Challenges of OO software
• Many small methods

• Inter-procedural control flow

• Heavily layered architecture

• Engineered for maintainability and reuse

• Reusable frameworks, more abstractions

• Complex, thinly distributed, runtime behaviour

• Challenging to provide actionable feedback

3

Hot methods - DaCapo
tradesoap benchmark

Method Occurrences
in CCT % Inherent Time Number of Unique

Calling Methods

java.lang.String.intern 461 15.818 15

java.net.SocketInputStream.socketRead0 27 6.576 1

java.security.AccessController.doPrivileged 390 5.719 53
org.apache.axis.encoding.SerializationContext

.startElement 66 3.577 7
org.h2.jdbcx.JdbcXAConnection

$PooledJdbcConnection.checkClosed 357 2.646 2

java.lang.Class.getClassLoader0 76 1.890 2

4

Calling Context Trees

5

Key Idea
• CCTs aren’t just random data

• There are patterns within the calling context tree

• induced by the design of the software

• compact

• repeated in multiple locations

• expensive when aggregated

6

Subsuming Methods

7

Subsuming Methods

7

Consolidated Tree

8

Subsuming Methods

• Subsuming methods form a course grained
partition of the CCT

• Each subsuming method represents a
pattern consisting of itself and the
subsumed methods it calls

• How do we choose our subsuming
methods?

9

Subsuming Attributes
• ‘Elementary’ methods - induce a limited range of behaviour

• We have used the height of the method as a measure of
the range of behaviour it induces

• Trivial case (height = 0) - method never calls any other
method - a leaf method

• ‘Subordinate’ methods - called in a predictable manner

• Every call to the method can be attributed to a (nearby)
common parent which is responsible for their invocation

• The trivial case is when a method is only ever called from a
single call site

10

Height and
Common Parent Distance

Height = 0
CPD = 2

11

Results - DaCapo tradesoap
benchmark

Full CCT Subsuming CCT

Nodes 64093 18349

Height 145 60

Unique Methods 8162 587

90% Method count 659 73

12

Constraints: height > 4 and CPD > 4

Top Subsuming Methods -
DaCapo tradesoap benchmark

Method Occurrences
in CCT

% Inherent
Time

% Subsumed
Time

com.sun.org.apache.xerces.internal.parsers.XMLParser.parse 36 0.000 11.534

org.apache.axis.encoding.SerializationContext.startElement 66 3.577 8.114

java.io.BufferedInputStream.fill 21 0.009 6.594

java.security.AccessController.doPrivileged 390 5.719 6.134

org.apache.axis.message.SAX2EventRecorder.replay 70 0.341 4.380

org.apache.axis.encoding.DeserializationContext.startElement 53 0.296 4.080

13

Evaluation Approach
• Evaluate the tool prototype

• Empirical evaluation of concrete metrics

• Number of patterns found

• Proportion of overall costs for which patterns are
responsible

• Use standard open benchmarks - DaCapo, SPECjvm

• Industrial case study

• Controlled user study and questionnaire

14

Research Plan
• Next Steps

• Thorough evaluation of subsuming methods

• Later this year

• Other subsuming characteristics - static attributes

• Other pattern matching or aggregation approaches

• Characteristics of identified patterns

• Next Year

• User study evaluation

15

Questions?

17

DaCapo tradesoap - CCT

DaCapo tradesoap

Nodes 64093

Height 145

Unique Methods 8162

18

CCRC - Subsuming

com.sun.org.apache.xerces.internal.parsers.XMLParser.parse

19

Occurrences 36
Height 36

Subsuming Height 15
Exclusive Time 0.000%
Inclusive Time 16.263%

Subsumed Time 11.534%

Research Questions
• Can we identify repeated patterns of method calls within

the dynamic behaviour of an object-oriented application
that represent performance critical sections of code?

• Are these identified repeated patterns useful in guiding
the performance optimisation process? Do they aid in
the comprehension of dynamic behaviour/performance?

• Can we automatically generate actionable feedback on
how to improve an application’s performance based on
the identified repeated patterns?

20

Related Work
• Very broad domain (100 venues in our SLR)

• Relevant work from HPC, Compiler,
Programming Language domains

• Majority of approaches provide simple metrics

• Lack of actionable feedback

• Very few approaches leverage static analysis

• Runtime bloat research focussed on data-flow

21

Runtime Bloat Research
• Tackle problem of excessive activity to achieve

seeming simple functionality

• Data-flow centric approaches

• Efficiency of data structures

• Object pooling opportunities

• Copy profiling

• Reference propagation profiling

22

Other research directions

• Does aggregation improve accuracy?

• Is the common parent idea useful for other
applications?

• Dominating methods

23

Schedule
January - 2014 Complete initial tool prototype development and evaluation

February
March Write first paper covering ideas and evaluation in first tool prototype
April Prototype development - second iteration
May
June ICSE 2014 PhD Symposium
July Second paper covering second tool prototype

August Prototype development - third iteration
September Focus on industrial case study evaluation

October
November Write up paper on updated tool and industrial case study
December Prototype development - fourth iteration

January - 2015
February

March Design and conduct user study evaluation of tool
April
May
June
July Write paper covering updated tool and user study evaluation

August Thesis writing
September

October
November
December

January - 2016
24

Expected Contributions
• Techniques for identifying repeated patterns of

dynamic behaviour within the calling context tree

• A tool that implements these techniques

• An evaluation of these techniques

• The development of actionable feedback for
improving the performance critical sections of
code represented by the identified repeated
patterns

25

Subsuming Attribute - Height
• Methods that induce a limited range of behaviour

• Difficult to optimise

• We have used the height of the method as a
measure of the range of behaviour it induces

• method height = max height of any sub-tree
with an instance of the method as its root

• Trivial case (height = 0) - method never calls
any other method - a leaf method

26

Subsuming Attribute -
Common Parent Distance

• Methods that are called in a constrained manner

• Every call to the method can be attributed to a
(nearby) common parent which is responsible
for their invocation

• We have used the common parent distance
(CPD) as a measure of this characteristic

• The trivial case (CPD = 1) is when a method is
only ever called from a single call site

27

