
Quantitative Properties:

Specification, Verification

and Synthesis
Srđan Krstić

advisor:

prof. Carlo Ghezzi

co-advisor:

Dr. Domenico Bianculli

Quantitative Properties:

Specification, Verification

and Synthesis
Srđan Krstić

advisor:

prof. Carlo Ghezzi

co-advisor:

Dr. Domenico Bianculli

– Wikipedia

“Properties that can be objectively expressed
using numbers (quantities) with a precisely

defined unit of measure.”

3

Quantitative properties

4

Quantitative properties

Response Time Throughput Availability

5

“The average response time of a service must
not exceed 30 milliseconds, if invoked by a

premium customer”

Numerical bound

Aggregate transformation
Timing relation between events

Features of Quantitative
Properties

6

Features of Quantitative
Properties

“At most 3 VM allocations are allowed within

2 minute time window.”

Time bounded sequence of events

Multiplicity of events

7

More Generally…
Quantitative Properties

…express numerical bound on a

certain value_ �� �

…consider sequence of events

L� � L� � . . . � LU

T

bounded by absolute time T

L� � L� � . . . � W bounded by an event

L� � L� � L� � . . . or unbounded

8

More Generally…
Quantitative Properties

…compute numerical values from

a set of specific events{L�, L�, . . . , LU}
timing relations between tuples

of specific events(L�, L�, . . . , LU)

…apply aggregate transformations{TH_(), H]N(), JV\U[(), . . .}

Scope

9

Specification

Verification Synthesis

Specification

1. Field Study

11

• Service-Based
Applications [1]

• Cloud-Based
Systems

• Pervasive
Systems

• Research

• Practice

[1] Bianculli et al: Specification patterns from research to industry: a case study in service based applications. ICSE-SEIP 2012

12

2. Definition and Documentation

se·man·tics \si-ˈman-tiks\

noun plural but singular or plural in
construction
- the study of the meanings of words
and phrases in language

- the meanings of words and phrases
in a particular context

13

3. Specification Patterns

14

4. Decidability and Complexity

15

5. Usability

Verification

17

1. Offline Trace

Checking

18

2. Runtime

 Verification

Synthesis

Synthesis

20

Logs

Inferred specifications: S1, S2, … , Sp

�2�,...,2T
� (W�, . . . ,WU)

�2�,...,2T
O (W�, . . . ,WU)

. . . }
Specification templates

Progress

Specification

22

Elasticity

Resource Management

Quality of Service

T

o

w

a

r

d

s

t

h

e

F

o

r

m

a

l

i

z

a

t

i

o

n

o

f

P

r

o

p

e

r

t

i

e

s

o

f

C

l

o

u

d

-

b

a

s

e

d

E

l

a

s

t

i

c

S

y

s

t

e

m

s

M

a

r

c

e

l

l

o

M

.

B

e

r

s

a

n

i

P

o

l

i

t

e

c

n

i

c

o

d

i

M

i

l

a

n

o

M

i

l

a

n

o

,

I

t

a

l

y

b

e

r

s

a

n

i

@

e

l

e

t

.

p

o

l

i

m

i

.

i

t

D

o

m

e

n

i

c

o

B

i

a

n

c

u

l

l

i

U

n

i

v

e

r

s

i

t

y

o

f

L

u

x

e

m

b

o

u

r

g

L

u

x

e

m

b

o

u

r

g

,

L

u

x

e

m

b

o

u

r

g

d

o

m

e

n

i

c

o

.

b

i

a

n

c

u

l

l

i

@

u

n

i

.

l

u

S

c

h

a

h

r

a

m

D

u

s

t

d

a

r

T

U

W

i

e

n

V

i

e

n

n

a

,

A

u

s

t

r

i

a

d

u

s

t

d

a

r

@

i

n

f

o

s

y

s

.

t

u

w

i

e

n

.

a

c

.

a

t

A

l

e

s

s

i

o

G

a

m

b

i

U

n

i

v

e

r

s

i

t

y

o

f

L

u

g

a

n

o

L

u

g

a

n

o

,

S

w

i

t

z

e

r

l

a

n

d

a

l

e

s

s

i

o

.

g

a

m

b

i

@

u

s

i

.

c

h

C

a

r

l

o

G

h

e

z

z

i

P

o

l

i

t

e

c

n

i

c

o

d

i

M

i

l

a

n

o

M

i

l

a

n

o

,

I

t

a

l

y

c

a

r

l

o

.

g

h

e

z

z

i

@

p

o

l

i

m

i

.

i

t

S

r

¯

d

a

n

K

r

s

t

i

´

c

P

o

l

i

t

e

c

n

i

c

o

d

i

M

i

l

a

n

o

M

i

l

a

n

o

,

I

t

a

l

y

s

r

d

a

n

.

k

r

s

t

i

c

@

p

o

l

i

m

i

.

i

t

ABSTRACT

Cloud
-based

elasti
c system

s run on a cloud
infras

tructu
re

and have
the ca

pabili
ty of dyn

amically
adjus

ting the al
loca-

tion of the
ir resou

rces in respo
nse to chang

es in the work-

load,
in a way

that b
alanc

es the
trade

-o↵ betwe
en the de

sired

qualit
y-of-s

ervice
and the op

eratio
nal co

sts. T
he act

ual el
as-

tic be
havio

r of th
ese sy

stems is de
termined by a com

binat
ion

of fac
tors, i

nclud
ing th

e inpu
t work

load,
the lo

gic of
the el

as-

tic contro
ller determ

ining
the type

of res
ource

adjus
tment,

and the un
derlyi

ng techn
ologic

al pla
tform

implementing
the

cloud
infras

tructu
re. A

ll thes
e factor

s have
to be taken

into

accou
nt to

expre
ss the

desire
d elasti

c behav
ior of

a system
,

as we
ll as t

o verify
wheth

er the
system

manifes
ts or n

ot suc
h

a behav
ior.

In this p
aper,

we ta
ke a first s

tep into these
direct

ions,
by

propo
sing a formalizat

ion, b
ased on the C

LTL
t (D) tem

poral

logic,
of sev

eral c
oncep

ts and prope
rties

relate
d to the be-

havio
r of cl

oud-b
ased elasti

c syst
ems. We also

repor
t on our

prelim
inary

evalua
tion of the

feasib
ility to check

the (for-

malized
) prop

erties
on execu

tion traces
using

an autom
ated

verific
ation

tool.

Categories and Subject Descriptors

D.2.4 [Soft
ware Engine

ering
]: Softw

are/P
rogra

m Verifi
-

cation
—Form

al Method
s

General Terms

Theor
y

Keywords

Cloud
computin

g, ela
stic system

s, tem
poral

logic

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

PESOS ’14, May 31, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2841-8/14/05 ...$15.00.

1. INTRODUCTION

Cloud
computin

g has b
ecome a pract

ical so
lution

to man-

age an
d levera

ge IT
resou

rces a
nd servic

es. C
loud platfo

rms

o↵er
severa

l bene
fits, a

mong which
the ability

to access
re-

sourc
es or servic

e applic
ations

o↵ere
d as (remote) servic

es,

availa
ble on-de

mand and on-th
e-fly,

and billed
accor

ding to

a pay-p
er-use

model.

Cloud
provid

ers o↵
er res

ource
s and

servic
es at t

hree d
i↵er-

ent layers
: at the Softw

are-a
s-a-S

ervice
(SaaS

) layer,
users

can remotely
access

full-fl
edged

softwa
re app

licatio
ns; at

the

Platfo
rm-as-a

Servi
ce (PaaS

) laye
r, one

finds
a develo

pment

platfo
rm, a deplo

yment and a run-ti
me execu

tion enviro
n-

ment, w
hich is use

d to run user-p
rovide

d code
in sandb

oxes

hoste
d on cloud

-based
premises; a

t the
Infra

struc
ture-a

s-a-

Servi
ce (IaaS

) the
user c

an access
computin

g resou
rces s

uch

as vir
tual m

achin
es, bl

ock storag
e, fire

walls,
load balan

cers,

or net
worki

ng I/O.

In this paper
, we focus

on the IaaS
layer,

and assum
e,

witho
ut los

s of g
enera

lity, t
hat re

sourc
es o↵e

red at thi
s leve

l

are virtua
l machin

es. In
partic

ular,
we consid

er clo
ud-ba

sed

elasti
c system

s: elasti
city [7] of

computin
g system

s is de-

fined
[11] b

y the (US)
Nationa

l Inst
itute

of Sta
ndard

s and

Techn
ology

(NIST)
as:

Capa
bilitie

s can be rapid
ly and elasti

cally
pro-

vision
ed, in

some cases
autom

atical
ly, to

quick
ly

scale
out, a

nd rapid
ly releas

ed to quick
ly scale

in. To the consu
mer, th

e capab
ilities

availa
ble

for pr
ovisio

ning often
appea

r to be un
limited and

can be purch
ased in any quant

ity at any
time.

In the case of sys
tems base

d on a cloud
infras

tructu
re, th

is

defini
tion can be interp

reted,
borro

wing
some terms from

physi
cs, as

the capab
ility of the

system
“to stretc

h” by dy-

namically
acqui

ring new computin
g resou

rces (
e.g., b

y start-

ing new virtua
l machin

es), and “to contra
ct” by releas

ing

resou
rces (e.g.,

by terminatin
g virtua

l machin
es).

Scalin
g

out (“
stretc

hing”
) and

scalin
g in (“cont

ractin
g”) ac

tions
(also

called
adapt

ation
action

s) are
determ

ined by an elasti
c con-

trolle
r, in respo

nse to chang
es in

the workl
oad.

Appli
cation

provid
ers explo

it resou
rce elasti

city at run

time to balan
ce the

trade
-o↵s b

etwee
n the qu

ality of ser
vice

(QoS), t
he input

workl
oad, a

nd the opera
tional

costs.
The

main goal i
s, wh

en confro
nted

with
fluctu

ating
workl

oads,

Specification

Presented @ PESOS 2014

24

SpecificatiOn Language fOr ServIce

CompoSition InTeractions

Verification

Metric temporal logic with Aggregates [2]

[2] Bianculli et al.: The tale of SOLOIST: a specification language for service compositions interactions. FACS 2012

Verification

25

�� ¬

Execution trace SOLOIST

SMT
solver…

Verification

26

QF-EUFIDL

SMT
solver�

Verification

SMT-based Checking of SOLOIST

over Sparse Traces

Marcello M. Bersani1 , Domenico Bianculli2 , Carlo Ghezzi1 , Srd̄an Krstić1 , and

Pierluigi San Pietro1

1 DEEP-SE group - DEIB - Politecnico di Milano, Italy

{

b

e

r

s

a

n

i

,

g

h

e

z

z

i

,

k

r

s

t

i

c

,

s

a

n

p

i

e

t

r

}

@

e

l

e

t

.

p

o

l

i

m

i

.

i

t

2 SnT Centre - University of Luxembourg, Luxembourg

d

o

m

e

n

i

c

o

.

b

i

a

n

c

u

l

l

i

@

u

n

i

.

l

u

Abstract. SMT solvers have been recently applied to bounded model checking

and satisfiability checking of metric temporal logic. In this paper we consider

SOLOIST, an extension of metric temporal logic with aggregate temporal modal-

ities; it has been defined based on a field study on the use of specification pat-

terns in the context of the provisioning of service-based applications. We apply

bounded satisfiability checking to perform trace checking of service execution

traces against requirements expressed in SOLOIST. In particular, we focus on

sparse traces, i.e., traces in which the number of time instants when events occur

is very low with respect to the length of the trace.

The main contribution of this paper is an encoding of SOLOIST formulae into

formulae of the theory of quantifier-free integer difference logic with uninter-

preted function and predicate symbols. This encoding paves the way for efficient

checking of SOLOIST formulae over sparse traces using an SMT-based verifica-

tion toolkit. We report on the evaluation of the proposed encoding, commenting

on its scalability and its effectiveness.

1 Introduction

Bounded satisfiability checking [23] (BSC) is a verification technique that complements

bounded model checking [9] (BMC): instead of a customary operational model (e.g.,

a state-transition system) used in BMC, BSC supports the analysis of a descriptive

model, denoted by a set of temporal logic formulae. With BSC, verification tasks be-

come suitable instances of the satisfiability problem for quite large formulae (written

in a certain logic), which comprehend the model of the system to analyze as well as

the requirement(s) to verify. BSC has been successfully applied in the context of metric

temporal logics and implemented in ZOT [23], a verification toolset based on SAT- and

SMT-solvers, developed within our group.

In this paper we apply BSC to trace checking for the language SOLOIST (Specifi-

catiOn Language fOr servIce compoSitions inTeractions) [8], a metric temporal logic

with new, additional temporal modalities that support aggregate operations on events

occurring in a given time window. SOLOIST has been defined based on the results of

a field study [7] on the type of property specification patterns used to express require-

ments in the context of service-based applications. The study—performed by some of

Nominated for best paper award @ FASE 2014

p q r sp

G(�,�����)

U(�,���)

�

�

�¬

28

Verification

Trace checking of Metric Temporal Logic with

Aggregating Modalities using MapReduce

Domenico Bianculli1 , Carlo Ghezzi2 , and Srd̄an Krstić2

1 SnT Centre - University of Luxembourg, Luxembourg

domeni
co.bia

nculli
@uni.l

u

2 DEEP-SE group - DEIB - Politecnico di Milano, Italy

{ghezz
i,krst

ic}@el
et.pol

imi.it

Abstract. Modern, complex software systems produce a large amount of execu-

tion data, often stored in logs. These logs can be analyzed using trace checking

techniques to check whether the system complies with its requirements specifi-

cations. Often these specifications express quantitative properties of the system,

which include timing constraints as well as higher-level constraints on the occur-

rences of events, expressed using aggregate operators.

In this paper we present an algorithm that exploits the MapReduce programming

model to check specifications expressed in a metric temporal logic with aggregat-

ing modalities, over large execution traces. The algorithm exploits the structure of

the formula to parallelize the evaluation, with a significant gain in time. We report

on the evaluation of the implementation—based on the Hadoop framework—of

the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBA), are built accord-

ing to a modular and decentralized architecture, and execute on a distributed environ-

ment. Their development and their operation depend on many stakeholders, including

the providers of various third-party services and the integrators that realize composite

applications by orchestrating third-party services. Service integrators are responsible,

to the end-users for guaranteeing an adequate level of quality of service, both in terms

of functional and non-functional requirements. This new type of software has triggered

several research efforts on the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on

property specification patterns [11] used in the context of SBAs, both in industrial and

in research settings. The study identified a new set of property specification patterns

specific to service provisioning. Most of these patterns are characterized by the pres-

ence of aggregate operations on sequence of events occurring in a given time window,

such as “the average distance between pairs of events (e.g., average response time)”,

“the number of events in a given time window”, “the average (or maximum) number

of events in a certain time interval over a certain time window”. This study led to the

definition of SOLOIST [8] (SpecificatiOn Language fOr servIce compoSitions inTerac-

tions), an extension of metric temporal logic with new temporal modalities that support

aggregate operations on events occurring in a given time window. The new temporal

Verification

To appear @ SEFM 2014

Future Schedule

30

T1 Field study - Cloud-based Systems (CBS)

T2 Survey on synthesis

T3 Consider potential new properties

T5 Adaptation of Offline methods to RV

T6 Field study - Pervasive Systems (PS)

T4 Synthesis of properties of CBS

Jul
2014

Aug
2014

Sep
2014

Oct
2014

Nov
2014

Dec
2014

Jun
2014

Quantitative Properties:

Specification, Verification

and Synthesis
Srđan Krstić

advisor:

prof. Carlo Ghezzi

co-advisor:

Dr. Domenico Bianculli

Acknowledgments

32

prof. Carlo Ghezzi

Dr. Domenico Bianculli

Additional Slides

Property Specification
Patterns

Dwyer et al Konrad et al Gruhn et al Bianculli et al
1 Absence 1 Minimum duration 1 Time bounded

existence
1 Avg response time

2 Universality 2 Maximum duration 2 Counting # events

3 Existence 3 Bounded
recurrence 2 Time bounded

response
3 Avg # events

4 Bounded existence 4 Bounded response 4 Max # events

5 Precedence 5 Bounded
invariance 3 Precedence with

delay
5 Absolute time

6 Response 6 Elapsed time
7 Response chains 4 Time restricted

precedence
7 Data-awareness

8 Precedence chains

9 Constrained chain

34

Cloud-Based Elastic
System

35

Elastic
Controller

Service Provider
Public

Interface

End-Users
Cloud

Interface

monitoring data

control action

maintain QoS
minimize costs

invocations

Cloud IaaS Provider

costs

Controlled
System

input workload

system load

+

-

add/remove VM

Property Groups
Elasticity Resource Management Quality of Service

Eagerness

Sensitivity

Plasticity

Precision

Oscillation

Resource thrashing

Cool-down period

Bounded concurrent

adaptations

Bounded resource

usage

Bounded QoS

degradation

Bounded actuation

delay

36

Examples

37

“For a period of 7 days, the application will successfully
process a minimum of 500,000 customer orders per day”

Sequence of events

Numerical bound
Aggregate transformation

Examples

38

“The missile avionics system shall update the position
of the ailerons exactly 20 times a second.”

Multiplicity of events

Numerical bound

Examples

39

“The university website shall not have more than 5
hours of scheduled downtime per month and not more
than an average of 1 hour of unscheduled downtime

per month.”

Related Work

Finkbeiner et al.

• collect statistics over run-time executions

• extend LTL to collect values

• language does not support timing information

41

Basin et al.

• MFOTL with aggregates

• more aggregates than SOLOIST

• values of the relation parameters vs occurrences

42

Bauer et al.

• PTLTLFO - past time linear temporal logic with first-
order (guarded) quantifiers and counting modality

• lacks timing information and bounded windows

43

Barre et al.

• MapReduce based approach

• plain LTL (without timing information and aggregates)

• inefficient handling of tuples (no sorting)

• no multi-operand conjunction and disjunction

44

