Basics on Design and Analysis of SE Experiments: Widespread Shortcomings

Natalia Juristo

Universidad Politecnica de Madrid (Spain)
University of Oulu (Finland)

Content

- 1. Experiment distinguish hallmark
- 2. Good practices for running a SE experiment
 - Definition & Operationalization
 - Design
 - 3. Implementation & Execution
 - 4. Analysis
 - 5. Interpretation
 - 6. Packaging & Publication
- 3. Summary of advices

- Causality
- ◆ Control

Scientific Knowledege

- Scientific laws are patterns of behaviour
- Describe cause-effect relationships
- Explain
 - why some events are related
 - how the mechanism linking the events behaves

Why Experiments Are Needed

 We cannot perceive laws directly through our senses

- Two activities are necessary
 - Systematic objective observation
 - Inference of links between cause & effect

A Scientific Method

- Collection of Empirical Data
 - Systematic observation to appreciate the nexus
- Theoretical retation of Data
 - Form a hyr resi (right or wrong) about the mechanisms relating the ever
- Collection Empirical Data
 - Hypothesis a manently tested against reality to know if they are the e or not

SE Experiments

- Identify and understand
 - the variables that play a role in software development
 - the connections between variables
- Learn cause-effect relationships between the development process and the obtained products
- Establish laws and theories about software construction that explain development behaviour

Experiment Definition

- Experiment
 - Models key characteristics of threality in a controlled environment and maniputating them iteratively to investigate the impact of such variations and get a better understanding of a phenomenon
- Laboralory
 - Simplified and controllable reality where the phenomenon under study can be manipulated

Control Is The Key For Causality

The key aspect of a controlled experiment is...
Control!!!

- Causality is discovered through the following reasoning
 - Control voids the effect of all irrelevant variables
 - The impact we observe in the response variable is only due to the manipulated variables

Factors & Response Variables

- To gain evidence of a presumed causeeffect relationship, the experimenter
 - Manipulates
 - the independent variables
 - or <u>factors</u>
 - Observes changes in
 - the dependent variable
 - or response variable

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Interpretation
- 6. Packaging and Publication

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Interpretation
- 6. Packaging and Publication

Definition Goal

- Problem Definition
 - As in any other research choose an open problem
- Research goals and questions
 - Causal research question
 - Does X cause Y?
 - Does X1 cause more of Y than X2 causes of Y?
 - Example
 - Does MDD cause higher quality software than other development paradigm?

MDD Experiment Example

- Run a subjects-based experiment on MDD
 - in the context of a course about MDD
- Factor
 - Development approach
- Treatments
 - MDD
 - Control?
- Response variable
 - Quality

Constructs Operationalization

Effect Operationalization

- 1. Effect Variables into Response Variables
 - Higher quality software => less defects in it => Testing techniques help to identify defects
 - Effectiveness
- 2 Metrics Definition
 - Number of defects found
 - More defects found = more effective testing technique
 - Proportion of defects found out of those seeded
- 3. Instrumentation
 - Seed defects into programs
 - Which type of defects?
 - How do we generate such defects?
 - Need one or more programs
 - Subjects applying the testing techniques
 - Which type of subjects?
 - Form where subjects write down the test cases generated OR the defects found
 - Do we want the subjects running their test cases OR the experimenter?
- 4. Data Collection procedure
 - Number of defects identified by subjects
 - Subjects writing down the defects founded
 - Number of defects exercise by the test cases generated by the subjects
 - Subjects writing down the test cases generated
- <u>5.</u> Measurement procedure = Metrics collection procedure

Cause Operationalization

- 1. Cause variables into treatments
 - Factor
 - Testing techniques
 - Treatments
 - White box / Black box applied by subjects
- 2. Treatments definition
 - Version of the technique
 - How treatment is administer
 - Teaching?
 - Description in a "reminder sheet"
 - Otros?

Effect Operationalization: Size Example

- 1. Response Variable
- 2. Metrics Definition
- 3. Instruments
- 4. Data Collection procedure
- 5. Measurement (metrics collection) procedure

Effect Operationalization: Size Example

- 1. Variables
 - Table length
- 2. Metrics Definition
 - Centimeters
- 3. Instruments
 - Measuring tape
- 4. Data Collection procedure
 - 1. Place the beginning of the tape just at one end of the table
 - Pull the tape until the other end
- Measurement procedure (metrics collection)
 - Look at the number printed on the tape that matches the extreme of the table

Effect Operationalization: Quality Example

- 1. Variables
 - Code quality -> Functionality -> Accuracy [ISO9126]
- 2. Metrics Definition
 - Percentage of acceptance test cases that are successfully fulfilled
 - 1 test case per atomic requirement
 - Each test case subdivided in items
 - All items need to be passed to consider a test case satisfied
- 3. Instruments
 - IDE where the code developed by subjects is stored
- 4. Data Collection procedure
 - For each test case
 - Run the code
- 5. Measurement (metrics collection) procedure
 - 1. For each test case decide if it is passed
 - 2. Sum up the number of test cases passed
 - 3. Convert such a number into a proportion

Cause Operationalization Treatment Definition

- Version of the treatment
 - What exactly is MDD?
 - NDT, WebRatio, OOHDM, OO-Method, etc.
 - What exactly is traditional?
 - Model-centric?; Code-centric?; other?
- How treatment is administer
 - Teaching?
- Are treatments applied through tools?
 - Which?

Formulate Hypothesis

MDD (OO-Method w/ Integranova tool)
satisfies different amount of test cases
for small problems implemented in java
than

A model-centric (UML w/ Eclipse)
when applied by novice developers

One-tailed vs Two-tailed

- Two-tailed hypothesis = Non directional
 - Predicts a difference between two variables
 - Not the direction or the nature of their relationship
 - Quality(MDD) Quality(Model-centric)
- One-tailed hypothesis = Directional
 - Predicts the direction of the difference between two variables
 - A positive or negative correlation
 - Quality(MDD) > Quality(Model-centric)
 - Requires previously obtained knowledge about the effect
 - Theory or evidence

Two-tailed Tests

Good Practices

- Think carefully about which metrics to use
 - Metrics are not yet a solved issue in SE
- Remember to decide on the measurement process beforehand!
 - This influences the instruments
- Use two-tailed hypothesis, better than one-tailed

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Interpretation
- 6. Packaging and Publication

Experimental Design

- Describe how the study is organized
- Identify undesired sources of variability
- Iterate improving design evaluating threats and confounding variables

Types of Design

- Depending on the number of factors and treatments a type of design is chosen
 - One factor w/ 2 treatments
 - Blocked design
 - Factorial design
 - Completely randomized design
 - Blocked factorial design
 - Fractional factorial design
 -
 - Repeated-measures randomized controlled trial

Design and Control

The key aspect of a controlled experiment is...

Control!!!

- The design of a controlled experiment is a set of strategies aiming to control
 - The relevant variables (under study)
 - The irrelevant variables but with known values
 - The irrelevant variables with unknown values

Main Design Strategies

- Treatments
 - Equality inside treatments
 - Similar conditions among treatment
- Irrelevant variables with known values
 - Blocking
 - The non-desired variable has effect on the dependent variables, but similar effect on every treatment group

- Block as many variables as you can
- Irrelevant variables with unknown values
 - Randomization
 - Assign treatments at random to experimental units to avoid the undue influence of any possible variables
 - Randomize for the rest

Example:

Blocking

The MDD experiment with two groups

Factor

Development paradigm

2 Levels

MDD & Traditional

		MDD	Traditional	
Session 1	P1	G1	G2	

- Imagine we have experts and novices
 - We blocked by experience

		MDD		Traditional	
Session	P1	Novices	Experts	Novices	Experts
		G1		G2	

Main Design Strategies

- Treatments
 - Equality inside treatments
 - Similar conditions among treatment
- Irrelevant variables with known values
 - Blocking
 - The non-desired variable has effect on the dependent variables, but similar effect on every treatment group
 - Block as many variables as you can
- Irrelevant variables with unknown values
 - Randomization
 - Assign treatments at random to experimental units to avoid the undue influence of any possible variables
 - Randomize for the rest

Blocking

- Blocking is the arrangement of experimental units into groups (blocks) consisting of units that are similar to one another
- Blocking reduces known but irrelevant sources of variation between units and thus allows greater precision in the study output

Blocking

- Blocking is the arrangement of experimental units into groups (blocks) consisting of units that are similar to one another
- Blocking reduces known but irrelevant sources of variation between units and thus allows greater precision in the study output
- Purposely assign every value of the non-desired variable to every experimental group
- The non-desired variable has effect on the dependent variables, but similar effect on every group (treatment)

Blocking

 Purposely assign every value of the nondesired variable to every experimental group

 The non-desired variable has effect on the dependent variables, but similar effect on every group (treatment)

Randomization

- To assign treatments at random to the experimental units
- Aims to avoid the undue influence of any possible confounders (known or unknown)
- The presence of uncontrolled confounders will tend to increase the experimental error

Randomization

- To assign treatments at random to the experimental units
- Aims to avoid the undue influence of any possible confounders (known or unknown)
- The presence of uncontrolled confounders will tend to increase the experimental error
- The importance of randomization cannot be over stressed
- Randomization is necessary for conclusions drawn from a experiment to be correct, unambiguous and defensible

Randomization

 The importance of randomization cannot be over stressed

 Randomization is necessary for conclusions drawn from a experiment to be correct, unambiguous and defensible

Iterating for Design

- Designing an experiment is an iterative task to reaching a trade-off among validity threats
 - Design
 - 2. Evaluate issues that threaten validity
- Several design choices need to be made to limit threats to validity
 - There is not such a thing as The Perfect Experiment that avoids all validity threats

Threat to Validity

- Experimenters must weigh the threats to validity and design the experiment trying to avoid them
- Those threat to validity which the experimenter suspect has failed to prevent has to be made explicit
- Good design try to avoid confounding variables

MDD Experiment Example

- Run a subjects-based experiment on MDD
 - in the context of a course about MDD
- Factor
 - Development approach
- Treatments
 - MDD
 - Traditional
- Response variable
 - Quality

1 Factor Design2 Treatments

		MDD	Traditional
Session 1	P1	G1	G2

- 1 session, 2 groups, 1 experimental Live with this depends on
- Cons
 - Divide by two the number of subjects
 - Decreasing the sample size and therefore lowering power
- Training perspective, pairs will only practice MDD or traditional method
 - Not viable alternative in a MDD course
- Very low generalization
 - Only to one problem

in this context

We cannot live with this

the sample size

we have

We can hardly live with this

- Pros
 - Treatments comparison done through identical conditions

Power relates with Type II error

Type I error (false positive)

Type II error

Paired Design 1 Object

		P1
Session 1	Traditional	G1
Session 2	MDD	G1

2 sessions, 1 group, 1 object

We cannot live with this

- Cons
 - Threat: Learning effect on object
 - Subjects might learn the problem in the first
 - Treatments comparison in not identical conditions
 - Similar conditions: Different sessions
 - Very dissimilar conditions: Different order
- Pros
 - Biggest sample size
 - Highest power
 - - Better control of subjects differences

We can hardly live with this

Paired Design 2 objects

		P1	P2
Session 1	Traditional	G1	
Session 2	MDD		G1

- 2 sessions, 1 group, 2 objects
- Cons
 - Treatments compared in different conditions
 - Similar conditions
 - Different sessions
 - Dissimilar conditions
 - Different order
 - Different problem
- Pros
 - Biggest sample size
 - Better control of subjects differences
 - Avoid learning effect on object

We cannot live with this

We can live with this

Great!!! ©

Cross-over 2 objects

		MDD	Traditional
Session 1	P1	G1	G2
Session 2	P2	G2	G1

- 2 session, 2 groups, 2 objects
- Cons

We can live with this

- Session and object is confounded
 - But does not affect treatments
- Hard to sell alternative in a MDD course
 - Specially the MDD-T order
- Pros

We can hardly live with this in our context

- Avoid the influence of session on trea
- Biggest sample size
- Better control of subjects differences
- No learning effect on object

Paired Blocked by object

		P1	P2
Session 1	Traditional	G1	G2
Session 2	MDD	G2	G1

- 2 session, 2 groups, 2 objects
- Cons
 - Session and development paradigm confounded
 - But adheres to the regular way it happens
 - Weak cheating effect on object
 - Since different treatments are being applied

We can live with this

Pros

- No learning effect on object
- Biggest sample size
- Better control of subjects differences
- Make sense from an educational point of view

We can live with this

Cross-over 1 object

	P1	
	MDD	Traditional
Session 1	G1	G2
Session 2	G2	G1

- 2 sessions, 2 groups, 1 object
 - First, half subjects MDD, the other half T; Then, the other way around
 - Same problem in both sessions
- Cons
 - Threat : Learning effect on object
 - Subjects might learn the problem in the first session and the results obtained in the second one may depend on the knowledge obtained in the first one
 - Threat : Cheating effect
 - Low generalization for other objects
 - Results are valid for only one problem
- Pros
 - We use the biggest sample size we can
 - Highest power
 - Avoid the influence of session on treatments

Just an Example!

- Noticed these are all not the only designs
 - Cross-over with 2 objects
 - Cross-over blocked by object
 - Matched pairs designs

We could have followed other reasoning

Design is Experiment-dependent

- The best design for certain situation can be the worst in others
 - Sample size was a problem in our experiment
 - If it is not, then first design could work
 - Sequential application of treatments is ok in our context (due to technology being tested)
 - For others, for example testing, application of treatment in only one order would be a big threat

- Do not copy your design from others!!
 - The sources of variability is particular to every experiment
 - You need to iteratively think about your design, evaluate threats and modify it selecting the best you can
 - Include the iterative process and decision in the paper!

- Replicate your own experiment
 - If you do it identically
 - Sample size is increased
 - If change something
 - Some threats to validity can be mitigated
 - In the example
 - Order threat
 - Low generalizability

- Make always a previous demographic questionnaire
 - Helps on blocking
 - For post-hoc analysis

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Interpretation
- 6. Packaging and Publication

Implementation & Execution Goals

- Implementation
 - Instantiate the experimental design, so can be executed
 - Tasks
 - Design all required instruments
 - Questionnaires, protocols and tools
 - Prepare all necessary material
 - Guidelines, document templates, specifications, codes and tools
- Execution
 - Run the experiment

- Run a Pilot
 - To be sure instruments work well
 - To assure explanations are clear
 - ...
 - Things usually do not go out as expected ⊗

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Results Interpretation
- 6. Packaging and Publication

Analysis Goal & Tasks

- Analyze collected data for
 - Describing sample
 - Testing hypothesis

Tasks

- Descriptive statistics
- 2. Select statistical test
- 3. Hypothesis testing
- 4. Power analysis
- 5. Effect size calculation

Statistical Test Selection

- Statistical tests
 - Exist for different purposes
 - Have different preconditions
 - Have different power
- Your data set must fulfill the test assumptions on
 - Experimental design
 - Distribution of data
- Choosing appropriate statistical test is key to get a reliable rejection or not rejection of the null hypothesis

Statistical Test Selection

Number of variables	Subjects in condition	Parametric Test	Non parametric Test
One variable: two treatments	Independent	Independent t-test	Mann-Whitney U test
	Dependent	Paired t-test	Wilcoxon matched pairs test
One variable: > 2 treatments	Independent	One factor independent ANOVA	Kruskal-Wallis-One way ANOVA
	Dependent	One factor repeated measures ANOVA	Friedman ANOVA
Two or more treatments	Independent/ Dependent	Variation of ANOVA- Analysis	

Parametric vs. Non-parametric

- Select statistical test considering data distribution
 - Normal distribution
 - Parametric tests
 - Non-normal or ordinal/nominal distribution
 - Non-parametric tests
- Do not assume normality (using the Central Limit Theorem)
 - Irrespective of the distribution of the parent population given that its mean m and a variance s2, and so long as the sample size n is large, the distribution of sample means is approximately normal with mean m and variance s2 /n
 - Consider non-parametric tests
 - SE experiments have small sample sizes
- But neither use always non-parametric test

Hypothesis Testing

- 1. Formulate the alternative and null hypothesis
- 2. Select statistical test considering data distribution
 - Normal distribution
 - Parametric tests
 - Non-normal or ordinal/nominal distribution
 - Non-parametric tests
- 3. Select significance level (α -value) and perform power analysis
 - ullet α conventionally 0.05 or 0.01
 - Power = 1- β (β conventionally 0.2)
 - Determine optimal sample size based on α , effect size and power
 - **Determine** α based on sample size, effect size and power

Perform Power Analysis

In the population ... H₀ is true H₀ is false Type II error **Correct** outcome H₀ is not rejected True negative False negative Decision Type I error **Correct** outcome H₀ is rejected False positive True positive

Sample Size & Statistical Power

- The foolish astronomer
 - An astronomer decides to build a telescope to study a distant galaxy
 - He foolishly builds it on the basis of available funds, rather than on the calculations of the needed power to actually see the galaxy
 - He orders the biggest telescope he can afford and hopes for the best...

Understanding the Outcome

- If null-hypothesis is rejected
 - There is an effect
- If null-hypothesis is not rejected
 - It is not possible to conclude there is no effect!
 - There is not sufficient evidence to accept there is an effect

Three Critical Parameters

- Statistical significance
 - A result is significant because it is predicted as unlikely to have occurred by chance alone
 - The observed effect seems to have a cause
- Power
 - The probability that a test finds there is no difference between treatments when there is
- Effect size
 - Magnitude of the results
 - Which is the size of the improvement?

- Learn about analysis
 - Get the advice of an expert
- Check the proper analysis for your design
- Do not always apply the same type of tests
 - Check tests assumptions on data distribution
- Provide the three parameters
 - Significance, power, effect size

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Results Interpretation
- 6. Packaging and Publication

Interpretation Goal

- Answering research questions
- Statistical testing is just the means to an end
 - Not an end in itself!!
- More difficult than running statistical tests
 - Interpretation of the results
 - What does the results mean?

Results Interpretation

- Do not forget to interpret the results and close the circle!
 - An experiment does not only give an output of a statistical test, you need to give an answer to the research question taking into account
 - The statistical issues
 - hypothesis test output, power, effect size
 - But also
 - Populations (subjects, objects), experiment protocol, observation of subjects, acontecimientos,...

Good Practices for Running a SE Experiment

- 1. Definition & Operationalization
- 2. Design
- 3. Implementation & Execution
- 4. Analysis
- 5. Interpretation
- 6. Packaging and Publication

Laboratory Package

- Motivating and enabling replication
 - Enabling independent confirmation of results
 - Making study design available for further investigation in different contexts
- Detailed account that allows replication
 - Measures, questionnaires, surveys, interview protocols, observational protocols, transcriptions, tape records, video record, pictures, ...

Make your Results Public

- Presenting, sharing and spreading results
 - For community building a body of knowledge
 - Enabling review, discussion and challenge of results
- Follow guidelines to compose your manuscript
 - Jedlitschka

- Make an experimental package for others to replicate your experiment
 - The proper content for a lab package in SE is not solved yet
 - Not only materials should be there but more info on the experiment to be repeated
- Follow guidelines when reporting an experiment

- Operationalization
- Design
- Implementation
- Analysis
- Interpretation
- Packaging
- Publication

- Think carefully about metrics to use
- Decide before hand on the measurement process
- Use two-tailed hypothesis
- Do not copy your design from others!
- Replicate your experiment
- Make always a demographic questionnaire
- Run a pilot
- Learn about tests or get the advice of an expert
- Be sure to correctly interpret the tests outcome
- Provide significance, power and effect size
- Give answer to the research question
- Made public at the web a replication package
- Follow guidelines

Basics on Design and Analysis of SE Experiments:

Widespread Shortcomings

Basics of Software Engineering Experimentation

Natalia Juristo and Ana M. Moreno

Foreword by Shari Lawrence Pfleeger

Natalia Juristo

Universidad Politecnica de Madrid (Spain) & University of Oulu (Finland)

Free at:

https://sites.google.com/site/basicsofsoftwareengineeringexp/

Kluwer Academic Publishers