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BSackground

- The behavior of a discrete-event dynamic system is formally given in terms
of a labeled state transition system: (S, A,—)

A is a set of labels

; . . A,
« = C SXAXS s.t. (S,A,8’) € = iff s’ reachable from s (written as S—8’)

el S
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BSackground

* In general S may be infinite, or even uncountable. Some abstraction
techniques are required in order to be able to enumerate the whole state

space.
* Abstract State Space: (A, L,=)

» Where A is a coverage of S, and =>CAXLXA s.t. exists a morphism f which

maps A labels into L labels.
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BSackground

* The relation = satisfies the condition EE:

(1) if a>a’ , then dsea, s’ea’ : SA’S’ with A € Fi(1)

. )\ b 9 9 b f()\) b
(2) if s—s’, then VaeA s.t. sea, 3a’€A s.t. s’ea’ A a=>a
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Time Basic nets - Reachabillity analysis

D P
- Three key points of the Time Reachability Graph building O @0.6
algorithm allow in many cases the termination.
» |dentification of inclusions between classes of states W/S
- Erasure of absolute times [P1+1, P1+2] T
- |dentification of anonymous timestamps v
sz

Bellettini, C.; Capra, L.; , "Reachability Analysis of Time Basic Petri Nets: A Time Coverage
Approach," Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th
International Symposium on , vol., no., pp.110-117, 26-29 Sept. 2011 doi: 10.1109/SYNASC.2011.16

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489
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 Three key points of the Time Reachability Graph building

)
206

algorithm allow in many cases the termination.
* |dentification of inclusions between classes of states W/S
« Erasure of absolute times [P1+1, P1+2] A
Execution of the Gas Burner example:
Total built abstract states: 22.978
Final abstract state space: 14.563
architecture # CPUs tool version compute model T H f (| exec. time
2.4Ghz Intel Core 2 Duo, 2GB RAM 1 X2 cores sequential local (single machine) - (2) L ~7.5 hrs

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489
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Sequential algorithm

wr.buildRoot ()

Model m

Remaining

State space

(S,

wte&\ccessovs(\m)
)OO

Sor S5 n stateSpace.get(§)
Sk.1dentifyRelationship(S;)

: : <> §= Sk.get\:eatwes( ) >
| |

EQUALS, INCLUDED, INCLUDES, NONE
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Sequential algorithm

wr.buildRoot ()

R So .4
Ss cveateSU\cceSSO\fS(W‘)

Straightforward, obut because of the state explosion problem
sequential tools may become very slow or even crash.

\ for S; i stateSpace.get(F) <
T *%%_QQ > Sk.identifyRelationship(S;)
d (@ EQUALS, INCLUDED, INCLUDES, NONE

0000

Model m

State space




Matteo Camilli

Map-Reduce

- Map-Reduce job =
- Map function (inputs -> key-value pairs) +
- Reduce function (key and list of values -> outputs)

- Map and Reduce tasks apply Map and Reduce function to many inputs in

parallel.
Hash(key) mod r

ok

0} > output

—

3

input

Map tasks shuffle Reduce tasks
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Map-Reduce TB nets analysis tool

Map step =

- given an unexplored state, it applies the eveateSuccessovs function. Incoming
transitions are stored into destination states by a list of identifiers.

Shuffle step =

- Gathers together states potentially related: This is done by using as
intermediate keys the evaluation of the get¥eatuves function.

Reduce step =

* given a set of states potentially related, it applies the dentifyRelationship
function foreach pair of states.

Building blocks =

- State = <M,C> pair. M marking, C constraint.

* dentifyRelationship computes the actual relationship between two states according to the following
rule:a€a < oM =c(M)ANC=C’

» getFedtuves returns just the topological part of M = o(M).

10
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Hybrid Iterative Map-Reduce

* A single Map-Reduce job is not
enough: lterative Map-Reduce

while (1 N 1> 0) {

if (1 N 1> threshold)
'runMapReduce( ) |
Map(')

Reduce() @ Q

'runLocalBuilder( )

* During the first and last iterations of
the algorithm the set of states is
quite small. Thus a MapReduce job
over a large cluster of machines is
useless and expensive in term of
time and resources.

‘ uential builder
- The computation starts with a \ — J

sequential algorithm and goes on O
until the state space size passes a 1/l end while
configurable threshold. After that

we distribute the computation over

a big cluster.

lterations

else

iteration output
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Hybrid Iterative Map-Reduce

* A single Map-Reduce job is not
enough: lterative Map-Reduce

while (I N 1>0){

we alstrioute tne computation over

a big cluster.

if (1 N 1> threshold)
- During the first and last iterations of runMapReduce() | | | |
Gas Burner example:
#machines machine type | #abstract states threshold time (m)

1 m2.2xlarge 1.456x10 200 175

4 m2.2xlarge 1.456x10 200 95

S m2.2xlarge 1.456x10 200 39
* The execution with 8 machines is almost 80% faster than the sequential

algorithm
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MaRDiGras

MapReduce-based Distributed bui\c\’ms of veachab’\\’\t\j GvaphS

MaRDiGraS
<<Java Class>> <<Java Class>>
. i i >
®ThresholdKeepGoing . (©SimpleCombiner<E
core <<Java Enumeration>> core
(3 Relationship
data
<<Java Class>>
(© SimpleReducer<E>
<<Java Class>> o
(®KeepGoing
core <<Java Class>>

<<Java Class>>
-keepGoingCondition/ 0..1 (®SequentialGraphBuilder (® NodePair

-graph | <<Java Class>>
core core
<<Java Enumeration>> -grgp (®Graph

(3 MardigrasCounter -localByildér 0.1 — data
core
\® <<Java Class>>

(3 ArrayListWritable<E>
<<Java Class>> data
(®GenericGraphgen

core

<<Java Class>>
(® GenericReducer<E>

core

incomingEdges [ 0..1

<<Java Class>> <<Java Enumeration>>
/® GGenericMappe«El\ GEddga:Type
core
<<Java Enumeration>> -typg” 0..1
(3 UpdateStatusCounter
core

#edges | 0.*

<<Java Interface>> <<Java Class>> #incomingEdges | <<Java Class>>
@ Model (& State r & Edge
data data " data
~ ~
1
I
I
|
<<Java Class>> <<Java Class>> <<Java Class>>

ConcreteModel ConcreteState

ConcreteEdge

12
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Use Cases

 P/T nets

- State = <M> marking, associates places with natural numbers.

- s=5 < M = M’ thus we can use the optimized Reduce phase.

- In order to prove the effectiveness of using MaRDiGraS to improve legacy
tools, we adapted an existing P/T nets tool: PIPE.

- To adapt the sequential algorithm of PIPE into a distributed one, we just
needed 290 lines of code: a very small number also if compared with the
dimension of the effectively used PIPE modules (~6500 lines of code).

13
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Shared Memory example:

« 1.831x10%reachable states

* The PIPE tool takes m

ore than 20 hours to

complete the computation.

« The adapted version takes 74 min
to complete the same computation, using 16

machines.

E

oy

wop

Simple Load Balancing example:

« 4.060x108 states
3.051 x 10°transitions
120GB of data

* execution time = 530 min. using

20 machines.

4.5e+08

3.5e+08
a 250408 -

1.50+08 +

10408 |
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CTL model checking in the cloud

- We developed a software tool which exploits the MaRDiGraS computed
graphs by applying iterative map-reduce algorithms based on fixpoint
characterizations of the basic temporal operators of CTL (Computational Tree

Logic).

- Given a state transition system T=<S,so,R,L>, and a set of states that satisfy
the ¢ formula ( [®]T)

* [EX®]r = R7(
- [EGD]T = wx(

[}
()
* [ElPUY]] T = px([W]r U ([l N R7(X)))

T)
r N R-(X)

14
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Computation Tree Logic

- CTL is a branching-time logic which models time as a tree-like structure where each
moment can be followed by several different possible futures. In CTL each basic
temporal operator (i.e., either X, F, G) must be immediately preceded by a path
quantifier (i.e., either A or E). In particular, CTL formulas are inductively defined as
follows

pu=p| ¢ |odVe| AY | EY (state formulas)

Yviu=Xo | Fo | Go | U@ (path formulas)

- The interpretation of a CTL formula is defined over a Kripke structure (i.e, a state

transition system).

Definition 1 (Kripke structure): A Kripke structure 7' is a
quadruple (S, Sy, R, L), where:

1) S is a finite set of states.
2) Sy is the set of initial states.

3) RC S x S is a a total transition relation, that is: Vs €
S ds’ € S such that (s,s") € R

4) L : S — 24P labels each state with the set of atomic
propositions that hold in that state.

15
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Computation Tree Logic

Fig. 1: @) T |5 AF¢; 0) T |5 EF6; (©) T =4 EGo; (4) T =4 E[gUY)]

« It can be shown that any CTL formula can be written in terms of -, v, EX, EG, and EU

R (W):={seS : 3s(R(s,s') Ns' € W)}

EX =R~
(XS] é@t]lo\?est $ixed point

[EG]r =@H¢]]T NE (X)) wmownotownic predicate transSovmweyr
[E[oU¥]]r =(px([¥]r U ([o]r N R™ (X))

least §ixed point

16



MapReduce EX evaluation

[EXolr = R™([¢]r)

Algorithm 2 MapReduce algorithm for evaluating £ X ¢

1: function MAP(k, s)

2 if s € [¢]r then

3 for e € R (s) do

4: emit(e, L)

5: end for

6 end if

7 emit(k, s)

8: end function

9: function REDUCE(k, list := [sq, S2,...])
10: if L€ list then

11: s: =8 €list s.t. s’ #1
12: emit(k, s)
13: end if

14: end function




MapReduce EG evaluation

[EGY]r = vx([¢]r N R™ (X))

Algorithm 3 MapReduce for evaluating £EG¢

1: function MAP(k, s)

2 if s € X then

3 for e € R (s) do
4: emit(e, L)

5 end for

6 end if

7 if s € [¢]r then

8: emit(k, s)

9: end if

10: end function

11: function REDUCE(k, list := [s1, 83, ...])
12: if L€ list A (s #L€ list) then
13: emit(k, s)

14: end if

15: end function

18



MapReduce EU evaluation

[E[oUY]lr = px([¥]r U ([9]r N R™(X)))

Algorithm 4 MapReduce algorithm for evaluating F[¢pU1)]

1: function MAP(k, s)

2 if s € X then

3 for e € R (s) do

4: emit(e, L)

5: end for

6 end if

7 if s € [¢]r Vs € [¢]r then
8: emit(k, s)

9: end if
10: end function

11: function REDUCE(k, list := [s1, S2, ...])

12: s:=¢ €list s.t. s #1

13: if (L€ list A s# null) V (s € [¢]r) then
14: emit(k, s)

15: end if

16: end function

19
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 Models:

- Shared memory

(~10° states, ~10 transitions)

- Dekker
(~107 states, ~108 transitions)

- Simple load balancing
(~108 states, ~10° transitions)

Table 2: Dekker report

Table 1: Shared memory report

property | ||property|r| | # machines | time (s)
EX[¢ 1.153 x 107 1 660
EX|¢ 1.153 x 107 2 532
EX|[o 1.153 x 107 4 241
EX|¢ 1.153 x 107 8 144
EX|¢ 1.153 x 107 16 120
EGy 7.405 x 10° 1 1567
EGy 7.405 x 10° 2 1356
EG[Y 7.405 x 10° 4 517
EG[¥ 7.405 x 10° 8 391
EG[y 7.405 x 10° 16 287

Elw Up) | 5.767 x 10° 1 1357

Elw Up) | 5.767 x 10° 2 1063

Elw Up] | 5.767 x 10° 4 585

Elw Up] | 5.767 x 10° 8 454

Elw Up] | 5.767 x 10° 16 372

property | ||property|r| | # machines | time (s)
EX|[¢ 2.135 x 10° 1 70
EX|[¢ 2.135 x 10° 2 67
EX|[o 2.135 x 10° 4 50
EX|o 2.135 x 10° 8 38
EG[Y 0 1 67
EG[y 0 2 55
EG[¥ 0 4 58

Elw Up] | 1.831 x 10° 1 1898

Elw Up] | 1.831 x 10° 2 1124

Elw Up| | 1.831 x 10° 4 839

Elw Up] | 1.831 x 10° 8 564

Elw Up] | 1.831 x 10° 16 509

Table 3: Simple load balancing report
property | ||property|r| | # machines | time (s)
EX|[¢ 1.716 x 10° 1 2908
EX|[¢ 1.716 x 10° 2 2401
EX|¢ 1.716 x 10° 4 937
EX|¢ 1.716 x 10° 8 693
EX[o 1.716 x 10° 16 251
EG[¢ 4.060 x 10° 1 21678
EG[¢ 4.060 x 10° 2 17147
EG¢ 4.060 x 10° 1 6525
EG[y 4.060 x 10° 8 2983
EG[¢ 4.060 x 10° 16 1226
Elw Up| | 7.524 x 107 1 1821
Elw Up|] | 7.524 x 107 2 1714
Elw Up] | 7524 x 107 1 602
Elw Up| | 7.524 x 107 8 377
Elw Up) | 7.524 x 107 16 203

20



time (s)

time(s)

CTL experiments
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(a) Dekker model checking time

T T T T T T T
EX[A] ——
EG[A] ——
EBUC] —
1000 -
100 L L 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

#machines

(d) Simple-lb model checking time

T T T T T T T

EX[H] ——

EGH —_

EKUH —

10000 |- .
1000
1 1 1 1 1 L 1 1
0 2 4 6 8 10 12 14 16

#machines

speedup

speedup

(b) Dekker Speedup

EX Speed‘up ' I ' ' ' l
EG Speedup
5 - EU Speedup
4+
3 -
2 -
1 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
#machines
(e) Simple-1b Speedup
18 T T T T T T T T
EX Speedup
EG Speedup
16 | EU Speedup
14
12
10 |
8 -
6 -
4 -
2 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

#machines

efficiency(#machines)

efficiency(#machines)
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0.6

0.4

0.2

0.8

0.6
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0.2

(c) Dekker efficiency

' ' ' ' ' ' EX Efficiency
EG Efficiency
EU Efficiency

1 1 1 Il 1 L 1

T

2 4 6 8 10 12 14
#machines

(f) Simple-1b efficiency

16

T T T T T

EX Efficiency
EG Efficiency ———
EU Efficiency

1 1 1 Il 1 L 1

2 4 6 8 10 12 14
#machines

16
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Conclusion

- MaRDiGraS + CTL verification in the cloud allow users to implement distributed
reachability graph builders and verification tools for different formalisms without care
about all non functional aspects.

« They apply techniques typically used by the big data community and so far
poorly explored for this kind of issues.

» We believe that this work could be a first step towards a synergy between two very
different, but related communities: the formal verification community and the big
data community.

* Open Questions
- How it can be optimized when the remaining set gets very small?
- How to choose the optimal threshold dynamically?

- Are there classes of formalisms for which this approach cannot be used? And
how can we adapt it to these classes?

* .7

22
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Planned \Work

« Development of a technique for tackling topologically infinite TB net models
- computation of minimal coverability sets (so far unexplored)

- this provides a means to decide several important properties also for real time
systems:

* coverability: is it possible to reach a marking dominating a given marking?
- boundedness: is the set of reachability markings finite?

« place boundedness: is it possible to bound the number of tokens in a given
place?

« semi-liveness: is there a reachable marking in which a given transition is
enabled?

23
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