UNIVERSITA DEGLI STUDI DI MILANO

Dept. of Computer Science

Formal Verification Problems in a Bigdata World:
Towards a Mighty Synergy

Matteo Camilli
matteo.camilliQunimi.it
http://camilli.di.unimi.it

ICSE 2014

Hyderabad, India
June 3, 2014

0@


mailto:matteo.camilli@unimi.it
http://camilli.dico.unimi.it

Matteo Camilli

Outline

- Introduction, Motivations, Objectives
- Background
- Some details on:
- MapReduce
- Techniques, Frameworks and Tools
« Experiments
- Conclusion

* Planned work



INntroduction

Matteo Camilli

Formal

/ /

Verification

« background on formal methods
* Modeling
* Interpreting

/

/

> Big Data

- deploy techniques into software

tools able to analyze large
amount of data very reliably and
efficiently

- adapting an application for

exploiting the scalability
provided by cloud computing
facilities.



Matteo Camilli

INntroduction

Tools '
e e

Formal <« Frameworks Big Data
Verification
Technigques
« background on formal methods - deploy techniques into software

tools able to analyze large
amount of data very reliably and
efficiently

* Modeling
* Interpreting

- adapting an application for
exploiting the scalability
provided by cloud computing
facilities.



Matteo Camilli

BSackground

- The behavior of a discrete-event dynamic system is formally given in terms
of a labeled state transition system: (S, A,—)

A is a set of labels

; . . A,
« = C SXAXS s.t. (S,A,8’) € = iff s’ reachable from s (written as S—8’)

el S



Matteo Camilli

BSackground

* In general S may be infinite, or even uncountable. Some abstraction
techniques are required in order to be able to enumerate the whole state

space.
* Abstract State Space: (A, L,=)

» Where A is a coverage of S, and =>CAXLXA s.t. exists a morphism f which

maps A labels into L labels.




Matteo Camilli

BSackground

* The relation = satisfies the condition EE:

(1) if a>a’ , then dsea, s’ea’ : SA’S’ with A € Fi(1)

. )\ b 9 9 b f()\) b
(2) if s—s’, then VaeA s.t. sea, 3a’€A s.t. s’ea’ A a=>a




Matteo Camilli

Time Basic nets - Reachabillity analysis

D P
- Three key points of the Time Reachability Graph building O @0.6
algorithm allow in many cases the termination.
» |dentification of inclusions between classes of states W/S
- Erasure of absolute times [P1+1, P1+2] T
- |dentification of anonymous timestamps v
sz

Bellettini, C.; Capra, L.; , "Reachability Analysis of Time Basic Petri Nets: A Time Coverage
Approach," Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th
International Symposium on , vol., no., pp.110-117, 26-29 Sept. 2011 doi: 10.1109/SYNASC.2011.16

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489



http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

Time

BasiC nets -

Reachability analysis

Matteo Camilli

 Three key points of the Time Reachability Graph building

)
206

algorithm allow in many cases the termination.
* |dentification of inclusions between classes of states W/S
« Erasure of absolute times [P1+1, P1+2] A
Execution of the Gas Burner example:
Total built abstract states: 22.978
Final abstract state space: 14.563
architecture # CPUs tool version compute model T H f (| exec. time
2.4Ghz Intel Core 2 Duo, 2GB RAM 1 X2 cores sequential local (single machine) - (2) L ~7.5 hrs

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489



http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

Matteo Camilli

Sequential algorithm

wr.buildRoot ()

Model m

Remaining

State space

(S,

wte&\ccessovs(\m)
)OO

Sor S5 n stateSpace.get(§)
Sk.1dentifyRelationship(S;)

: : <> §= Sk.get\:eatwes( ) >
| |

EQUALS, INCLUDED, INCLUDES, NONE




Matteo Camilli

Sequential algorithm

wr.buildRoot ()

R So .4
Ss cveateSU\cceSSO\fS(W‘)

Straightforward, obut because of the state explosion problem
sequential tools may become very slow or even crash.

\ for S; i stateSpace.get(F) <
T *%%_QQ > Sk.identifyRelationship(S;)
d (@ EQUALS, INCLUDED, INCLUDES, NONE

0000

Model m

State space




Matteo Camilli

Map-Reduce

- Map-Reduce job =
- Map function (inputs -> key-value pairs) +
- Reduce function (key and list of values -> outputs)

- Map and Reduce tasks apply Map and Reduce function to many inputs in

parallel.
Hash(key) mod r

ok

0} > output

—

3

input

Map tasks shuffle Reduce tasks



Matteo Camilli

Map-Reduce TB nets analysis tool

Map step =

- given an unexplored state, it applies the eveateSuccessovs function. Incoming
transitions are stored into destination states by a list of identifiers.

Shuffle step =

- Gathers together states potentially related: This is done by using as
intermediate keys the evaluation of the get¥eatuves function.

Reduce step =

* given a set of states potentially related, it applies the dentifyRelationship
function foreach pair of states.

Building blocks =

- State = <M,C> pair. M marking, C constraint.

* dentifyRelationship computes the actual relationship between two states according to the following
rule:a€a < oM =c(M)ANC=C’

» getFedtuves returns just the topological part of M = o(M).

10



Matteo Camilli

Hybrid Iterative Map-Reduce

* A single Map-Reduce job is not
enough: lterative Map-Reduce

while (1 N 1> 0) {

if (1 N 1> threshold)
'runMapReduce( ) |
Map(')

Reduce() @ Q

'runLocalBuilder( )

* During the first and last iterations of
the algorithm the set of states is
quite small. Thus a MapReduce job
over a large cluster of machines is
useless and expensive in term of
time and resources.

‘ uential builder
- The computation starts with a \ — J

sequential algorithm and goes on O
until the state space size passes a 1/l end while
configurable threshold. After that

we distribute the computation over

a big cluster.

lterations

else

iteration output




Matteo Camilli

Hybrid Iterative Map-Reduce

* A single Map-Reduce job is not
enough: lterative Map-Reduce

while (I N 1>0){

we alstrioute tne computation over

a big cluster.

if (1 N 1> threshold)
- During the first and last iterations of runMapReduce() | | | |
Gas Burner example:
#machines machine type | #abstract states threshold time (m)

1 m2.2xlarge 1.456x10 200 175

4 m2.2xlarge 1.456x10 200 95

S m2.2xlarge 1.456x10 200 39
* The execution with 8 machines is almost 80% faster than the sequential

algorithm




Matteo Camilli

MaRDiGras

MapReduce-based Distributed bui\c\’ms of veachab’\\’\t\j GvaphS

MaRDiGraS
<<Java Class>> <<Java Class>>
. i i >
®ThresholdKeepGoing . (©SimpleCombiner<E
core <<Java Enumeration>> core
(3 Relationship
data
<<Java Class>>
(© SimpleReducer<E>
<<Java Class>> o
(®KeepGoing
core <<Java Class>>

<<Java Class>>
-keepGoingCondition/ 0..1 (®SequentialGraphBuilder (® NodePair

-graph | <<Java Class>>
core core
<<Java Enumeration>> -grgp (®Graph

(3 MardigrasCounter -localByildér 0.1 — data
core
\® <<Java Class>>

(3 ArrayListWritable<E>
<<Java Class>> data
(®GenericGraphgen

core

<<Java Class>>
(® GenericReducer<E>

core

incomingEdges [ 0..1

<<Java Class>> <<Java Enumeration>>
/® GGenericMappe«El\ GEddga:Type
core
<<Java Enumeration>> -typg” 0..1
(3 UpdateStatusCounter
core

#edges | 0.*

<<Java Interface>> <<Java Class>> #incomingEdges | <<Java Class>>
@ Model (& State r & Edge
data data " data
~ ~
1
I
I
|
<<Java Class>> <<Java Class>> <<Java Class>>

ConcreteModel ConcreteState

ConcreteEdge

12



Matteo Camilli

Use Cases

 P/T nets

- State = <M> marking, associates places with natural numbers.

- s=5 < M = M’ thus we can use the optimized Reduce phase.

- In order to prove the effectiveness of using MaRDiGraS to improve legacy
tools, we adapted an existing P/T nets tool: PIPE.

- To adapt the sequential algorithm of PIPE into a distributed one, we just
needed 290 lines of code: a very small number also if compared with the
dimension of the effectively used PIPE modules (~6500 lines of code).

13



Use Cases

Matteo Camilli

Shared Memory example:

« 1.831x10%reachable states

* The PIPE tool takes m

ore than 20 hours to

complete the computation.

« The adapted version takes 74 min
to complete the same computation, using 16

machines.

E

oy

wop

Simple Load Balancing example:

« 4.060x108 states
3.051 x 10°transitions
120GB of data

* execution time = 530 min. using

20 machines.

4.5e+08

3.5e+08
a 250408 -

1.50+08 +

10408 |




Matteo Camilli

CTL model checking in the cloud

- We developed a software tool which exploits the MaRDiGraS computed
graphs by applying iterative map-reduce algorithms based on fixpoint
characterizations of the basic temporal operators of CTL (Computational Tree

Logic).

- Given a state transition system T=<S,so,R,L>, and a set of states that satisfy
the ¢ formula ( [®]T)

* [EX®]r = R7(
- [EGD]T = wx(

[}
()
* [ElPUY]] T = px([W]r U ([l N R7(X)))

T)
r N R-(X)

14



Matteo Camilli

Computation Tree Logic

- CTL is a branching-time logic which models time as a tree-like structure where each
moment can be followed by several different possible futures. In CTL each basic
temporal operator (i.e., either X, F, G) must be immediately preceded by a path
quantifier (i.e., either A or E). In particular, CTL formulas are inductively defined as
follows

pu=p| ¢ |odVe| AY | EY (state formulas)

Yviu=Xo | Fo | Go | U@ (path formulas)

- The interpretation of a CTL formula is defined over a Kripke structure (i.e, a state

transition system).

Definition 1 (Kripke structure): A Kripke structure 7' is a
quadruple (S, Sy, R, L), where:

1) S is a finite set of states.
2) Sy is the set of initial states.

3) RC S x S is a a total transition relation, that is: Vs €
S ds’ € S such that (s,s") € R

4) L : S — 24P labels each state with the set of atomic
propositions that hold in that state.

15



Matteo Camilli

Computation Tree Logic

Fig. 1: @) T |5 AF¢; 0) T |5 EF6; (©) T =4 EGo; (4) T =4 E[gUY)]

« It can be shown that any CTL formula can be written in terms of -, v, EX, EG, and EU

R (W):={seS : 3s(R(s,s') Ns' € W)}

EX =R~
(XS] é@t]lo\?est $ixed point

[EG]r =@H¢]]T NE (X)) wmownotownic predicate transSovmweyr
[E[oU¥]]r =(px([¥]r U ([o]r N R™ (X))

least §ixed point

16



MapReduce EX evaluation

[EXolr = R™([¢]r)

Algorithm 2 MapReduce algorithm for evaluating £ X ¢

1: function MAP(k, s)

2 if s € [¢]r then

3 for e € R (s) do

4: emit(e, L)

5: end for

6 end if

7 emit(k, s)

8: end function

9: function REDUCE(k, list := [sq, S2,...])
10: if L€ list then

11: s: =8 €list s.t. s’ #1
12: emit(k, s)
13: end if

14: end function




MapReduce EG evaluation

[EGY]r = vx([¢]r N R™ (X))

Algorithm 3 MapReduce for evaluating £EG¢

1: function MAP(k, s)

2 if s € X then

3 for e € R (s) do
4: emit(e, L)

5 end for

6 end if

7 if s € [¢]r then

8: emit(k, s)

9: end if

10: end function

11: function REDUCE(k, list := [s1, 83, ...])
12: if L€ list A (s #L€ list) then
13: emit(k, s)

14: end if

15: end function

18



MapReduce EU evaluation

[E[oUY]lr = px([¥]r U ([9]r N R™(X)))

Algorithm 4 MapReduce algorithm for evaluating F[¢pU1)]

1: function MAP(k, s)

2 if s € X then

3 for e € R (s) do

4: emit(e, L)

5: end for

6 end if

7 if s € [¢]r Vs € [¢]r then
8: emit(k, s)

9: end if
10: end function

11: function REDUCE(k, list := [s1, S2, ...])

12: s:=¢ €list s.t. s #1

13: if (L€ list A s# null) V (s € [¢]r) then
14: emit(k, s)

15: end if

16: end function

19



CTL experiments

Matteo Camilli

 Models:

- Shared memory

(~10° states, ~10 transitions)

- Dekker
(~107 states, ~108 transitions)

- Simple load balancing
(~108 states, ~10° transitions)

Table 2: Dekker report

Table 1: Shared memory report

property | ||property|r| | # machines | time (s)
EX[¢ 1.153 x 107 1 660
EX|¢ 1.153 x 107 2 532
EX|[o 1.153 x 107 4 241
EX|¢ 1.153 x 107 8 144
EX|¢ 1.153 x 107 16 120
EGy 7.405 x 10° 1 1567
EGy 7.405 x 10° 2 1356
EG[Y 7.405 x 10° 4 517
EG[¥ 7.405 x 10° 8 391
EG[y 7.405 x 10° 16 287

Elw Up) | 5.767 x 10° 1 1357

Elw Up) | 5.767 x 10° 2 1063

Elw Up] | 5.767 x 10° 4 585

Elw Up] | 5.767 x 10° 8 454

Elw Up] | 5.767 x 10° 16 372

property | ||property|r| | # machines | time (s)
EX|[¢ 2.135 x 10° 1 70
EX|[¢ 2.135 x 10° 2 67
EX|[o 2.135 x 10° 4 50
EX|o 2.135 x 10° 8 38
EG[Y 0 1 67
EG[y 0 2 55
EG[¥ 0 4 58

Elw Up] | 1.831 x 10° 1 1898

Elw Up] | 1.831 x 10° 2 1124

Elw Up| | 1.831 x 10° 4 839

Elw Up] | 1.831 x 10° 8 564

Elw Up] | 1.831 x 10° 16 509

Table 3: Simple load balancing report
property | ||property|r| | # machines | time (s)
EX|[¢ 1.716 x 10° 1 2908
EX|[¢ 1.716 x 10° 2 2401
EX|¢ 1.716 x 10° 4 937
EX|¢ 1.716 x 10° 8 693
EX[o 1.716 x 10° 16 251
EG[¢ 4.060 x 10° 1 21678
EG[¢ 4.060 x 10° 2 17147
EG¢ 4.060 x 10° 1 6525
EG[y 4.060 x 10° 8 2983
EG[¢ 4.060 x 10° 16 1226
Elw Up| | 7.524 x 107 1 1821
Elw Up|] | 7.524 x 107 2 1714
Elw Up] | 7524 x 107 1 602
Elw Up| | 7.524 x 107 8 377
Elw Up) | 7.524 x 107 16 203

20



time (s)

time(s)

CTL experiments

Matteo Camilli

(a) Dekker model checking time

T T T T T T T
EX[A] ——
EG[A] ——
EBUC] —
1000 -
100 L L 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

#machines

(d) Simple-lb model checking time

T T T T T T T

EX[H] ——

EGH —_

EKUH —

10000 |- .
1000
1 1 1 1 1 L 1 1
0 2 4 6 8 10 12 14 16

#machines

speedup

speedup

(b) Dekker Speedup

EX Speed‘up ' I ' ' ' l
EG Speedup
5 - EU Speedup
4+
3 -
2 -
1 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
#machines
(e) Simple-1b Speedup
18 T T T T T T T T
EX Speedup
EG Speedup
16 | EU Speedup
14
12
10 |
8 -
6 -
4 -
2 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

#machines

efficiency(#machines)

efficiency(#machines)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

(c) Dekker efficiency

' ' ' ' ' ' EX Efficiency
EG Efficiency
EU Efficiency

1 1 1 Il 1 L 1

T

2 4 6 8 10 12 14
#machines

(f) Simple-1b efficiency

16

T T T T T

EX Efficiency
EG Efficiency ———
EU Efficiency

1 1 1 Il 1 L 1

2 4 6 8 10 12 14
#machines

16

21




Matteo Camilli

Conclusion

- MaRDiGraS + CTL verification in the cloud allow users to implement distributed
reachability graph builders and verification tools for different formalisms without care
about all non functional aspects.

« They apply techniques typically used by the big data community and so far
poorly explored for this kind of issues.

» We believe that this work could be a first step towards a synergy between two very
different, but related communities: the formal verification community and the big
data community.

* Open Questions
- How it can be optimized when the remaining set gets very small?
- How to choose the optimal threshold dynamically?

- Are there classes of formalisms for which this approach cannot be used? And
how can we adapt it to these classes?

* .7

22



Matteo Camilli

Planned \Work

« Development of a technique for tackling topologically infinite TB net models
- computation of minimal coverability sets (so far unexplored)

- this provides a means to decide several important properties also for real time
systems:

* coverability: is it possible to reach a marking dominating a given marking?
- boundedness: is the set of reachability markings finite?

« place boundedness: is it possible to bound the number of tokens in a given
place?

« semi-liveness: is there a reachable marking in which a given transition is
enabled?

23



Matteo Camilli

References

- Matteo Camilli. 2012. Petri nets state space analysis in the cloud.
In Proceedings of the 2012 International Conference on Software Engineering (ICSE 2012). IEEE
Press, Piscataway, NJ, USA, 1638-1640.

 Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. 2012. Symbolic State Space
Exploration of RT Systems in the Cloud. In Proceedings of the 2012 14th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC '12). IEEE
Computer Society, Washington, DC, USA, 295-302. DOI=10.1109/SYNASC.2012.18 http://
dx.doi.org/10.1109/SYNASC.2012.18

- C. Bellettini, M. Camilli, L. Capra, and M. Monga. Mardigras: Simplified building of reachability
graphs on large clusters. In P. Abdulla and |. Potapov, editors, Reachability Problems, volume
8169 of LNCS, pages 83-95. Springer Berlin Heidelberg, 2013.

- Matteo Camilli. 2014. Formal verification problems in a big data world: towards a mighty synergy.
In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE
Companion 2014). ACM, New York, NY, USA, 638-641. DOI=10.1145/2591062.2591088 http://
doi.acm.org/10.1145/2591062.2591088

24


http://dx.doi.org/10.1109/SYNASC.2012.18
http://doi.acm.org/10.1145/2591062.2591088

