10:30 - 11:00 |
Trading Robustness for Maintainability: An Empirical Study of Evolving C# Programs
Mainstream programming languages provide built-in exception handling mechanisms to support robust and maintainable implementation of exception handling in software systems. Most of these modern languages, such as C#, Ruby, Python and many others, are often claimed to have more appropriated exception handling mechanisms. They reduce programming constraints on exception handling to favor agile changes in the source code. These languages provide what we call maintenance-driven exception handling mechanisms. It is expected that the adoption of these mechanisms improve software maintainability without hindering software robustness. However, there is still little empirical knowledge about the impact that adopting these mechanisms have on software robustness. This paper addressed this gap by conducting an empirical study aimed at understanding the relationship between changes in C# programs and their robustness. In particular, we evaluated how changes in the normal and exceptional code were related to exception handling faults. We applied a change impact analysis and a control flow analysis in 119 versions of 16 C# programs. The results showed that: (i) most of the problems hindering software robustness in those programs are caused by changes in the normal code, (ii) many potential faults were introduced even when improving exception handling in C# code, and (iii) faults are often facilitated by the maintenance-driven flexibility of the exception handling mechanism. Moreover, we present a series of change scenarios that decrease the program robustness.
|
|
Nelio Cacho, Eiji Barbosa, Thiago Cesar, Alessandro Garcia, Thomas Filipe, and Eliezio Soares |
|
UFRN, Brazil; PUC-Rio, Brazil |
|
11:00 - 11:30 |
Writing and Enforcing Contract Specifications
Contracts are a popular tool for specifying the functional behavior of software. This paper characterizes the contracts that developers write, the contracts that developers could write, and how a developer reacts when shown the difference. This paper makes three research contributions based on an investigation of open-source projects' use of Code Contracts. First, we characterize Code Contract usage in practice. For example, approximately three-fourths of the Code Contracts are basic checks for the presence of data. We discuss similarities and differences in usage across the projects, and we identify annotation burden, tool support, and training as possible explanations based on developer interviews. Second, based on contracts automatically inferred for four of the projects, we find that developers underutilize contracts for expressing state updates, object state indicators, and conditional properties. Third, we performed user studies to learn how developers decide which contracts to enforce. The developers used contract suggestions to support their existing use cases with more expressive contracts. However, the suggestions did not lead them to experiment with other use cases for which contracts are better-suited. In support of the research contributions, the paper presents two engineering contributions: (1) Celeriac, a tool for generating traces of .NET programs compatible with the Daikon invariant detection tool, and (2) Contract Inserter, a Visual Studio add-in for discovering and inserting likely invariants as Code Contracts.
|
|
Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst |
|
University of Washington, USA |
|
11:30 - 12:00 |
Using Dynamic Analysis to Generate Disjunctive Invariants
Program invariants are important for defect detection, program verification, and program repair. However, existing techniques have limited support for important classes of invariants such as disjunctions, which express the semantics of conditional statements. We propose a method for generating disjunctive invariants over numerical domains, which are inexpressible using classical convex polyhedra. Using dynamic analysis and reformulating the problem in non-standard ``max-plus'' and ``min-plus'' algebras, our method constructs hulls over program trace points. Critically, we introduce and infer a weak class of such invariants that balances expressive power against the computational cost of generating nonconvex shapes in high dimensions. Existing dynamic inference techniques often generate spurious invariants that fit some program traces but do not generalize. With the insight that generating dynamic invariants is easy, we propose to verify these invariants statically using k-inductive SMT theorem proving which allows us to validate invariants that are not classically inductive. Results on difficult kernels involving nonlinear arithmetic and abstract arrays suggest that this hybrid approach efficiently generates and proves correct program invariants.
|
|
ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest |
|
University of New Mexico, USA; University of Virginia, USA |
|
12:00 - 12:30 |
Inductive Verification of Data Model Invariants for Web Applications
Modern software applications store their data in remote cloud servers. Users interact with these applications using web browsers or thin clients running on mobile devices. A key issue in dependability of these applications is the correctness of the actions that update the data store, which are triggered by user requests. In this paper, we present techniques for au- tomatically checking if the actions of an application preserve the data model invariants. Our approach first automatically extracts a data model specification, which we call an abstract data store, from a given application using instrumented exe- cution. The abstract data store identifies the sets of objects and relations (associations) used by the application, and the actions that update the data store by deleting or creating objects or by changing the relations among the objects. We show that checking invariants of an abstract data store corre- sponds to inductive invariant verification, and can be done using a mapping to First Order Logic (FOL) and using a FOL theorem prover. We implemented this approach for the Rails framework and applied it to three open source applications. We found four previously unknown bugs and reported them to the developers, who confirmed and imme- diately fixed two of them.
|
|
Ivan Bocic and Tevfik Bultan |
|
University of California at Santa Barbara, USA |