10:30 - 11:00 |
Mining Configuration Constraints: Static Analyses and Empirical Results
Highly-configurable systems allow users to tailor the software to their specific needs. Not all combinations of configuration options are valid though, and constraints arise for technical or non-technical reasons. Explicitly describing these constraints in a variability model allows reasoning about the supported configurations. To automate creating variability models, we need to identify the origin of such configuration constraints. We propose an approach which uses build-time errors and a novel feature-effect heuristic to automatically extract configuration constraints from C code. We conduct an empirical study on four highly-configurable open-source systems with existing variability models having three objectives in mind: evaluate the accuracy of our approach, determine the recoverability of existing variability-model constraints using our analysis, and classify the sources of variability-model constraints. We find that both our extraction heuristics are highly accurate (93% and 77% respectively), and that we can recover 19% of the existing variability-models using our approach. However, we find that many of the remaining constraints require expert knowledge or more expensive analyses. We argue that our approach, tooling, and experimental results support researchers and practitioners working on variability model re-engineering, evolution, and consistency-checking techniques.
|
|
Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki |
|
University of Waterloo, Canada; IT University of Copenhagen, Denmark; Carnegie Mellon University, USA |
|
11:00 - 11:30 |
Which Configuration Option Should I Change?
Modern software often exposes configuration options that enable users to customize its behavior. During software evolution, developers may change how the configuration options behave. When upgrading to a new software version, users may need to re-configure the software by changing the values of certain configuration options. This paper addresses the following question during the evolution of a configurable software system: which configuration options should a user change to maintain the software's desired behavior? This paper presents a technique (and its tool implementation, called ConfSuggester) to troubleshoot configuration errors caused by software evolution. ConfSuggester uses dynamic profiling, execution trace comparison, and static analysis to link the undesired behavior to its root cause - a configuration option whose value can be changed to produce desired behavior from the new software version. We evaluated ConfSuggester on 8 configuration errors from 6 configurable software systems written in Java. For 6 errors, the rootcause configuration option was ConfSuggester's first suggestion. For 1 error, the root cause was ConfSuggester's third suggestion. The root cause of the remaining error was ConfSuggester's sixth suggestion. Overall, ConfSuggester produced significantly better results than two existing techniques. ConfSuggester runs in just a few minutes, making it an attractive alternative to manual debugging.
|
|
Sai Zhang and Michael D. Ernst |
|
University of Washington, USA |
|
11:30 - 12:00 |
Detecting and Summarizing Differences across Multiple Instances of Code Clones
Clone detectors find similar code fragments (i.e., instances of code clones) and report large numbers of them for industrial systems. To maintain or manage code clones, developers often have to investigate differences of multiple cloned code fragments. However,existing program differencing techniques compare only two code fragments at a time. Developers then have to manually combine several pairwise differencing results. In this paper, we present an approach to automatically detecting differences across multiple clone instances. We have implemented our approach as an Eclipse plugin and evaluated its accuracy with three Java software systems. Our evaluation shows that our algorithm has precision over 97.66% and recall over 95.63% in three open source Java projects. We also conducted a user study of 18 developers to evaluate the usefulness of our approach for eight clone-related refactoring tasks. Our study shows that our approach can significantly improve developers’performance in refactoring decisions, refactoring details, and task completion time on clone-related refactoring tasks. Automatically detecting differences across multiple clone instances also opens opportunities for building practical applications of code clones in software maintenance, such as auto-generation of application skeleton, intelligent simultaneous code editing.
|
|
Yun Lin, Zhenchang Xing, Yinxing Xue, Yang Liu, Xin Peng, Jun Sun, and Wenyun Zhao |
|
Fudan University, China; Nanyang Technological University, Singapore; National University of Singapore, Singapore; Singapore University of |
|
12:00 - 12:30 |
Achieving Accuracy and Scalability Simultaneously in Detecting Application Clones on Android Markets
Besides traditional problems such as potential bugs, (smartphone) application clones on Android markets bring new threats. That is, attackers clone the code from legitimate Android applications, assemble it with malicious code or advertisements, and publish these "purpose-added" app clones on the same or other markets for benefits. Three inherent and unique characteristics make app clones difficult to detect by existing techniques: a billion opcode problem caused by cross-market publishing, gap between code clones and app clones, and prevalent Type 2 and Type 3 clones. Existing techniques achieve either accuracy or scalability, but not both. To achieve both goals, we use a geometry characteristic, called centroid, of dependency graphs to measure the similarity between methods (code fragments) in two apps. Then we synthesize the method-level similarities and draw a Y/N conclusion on app (core functionality) cloning. The observed "centroid effect" and the inherent "monotonicity" property enable our approach to achieve both high accuracy and scalability. We implemented the app clone detection system and evaluated it on five whole Android markets (including 150,145 apps, 203 million methods and 26 billion opcodes). It takes less than one hour to perform cross-market app clone detection on the five markets after generating centroids only once.
|
|
Kai Chen, Peng Liu, and Yingjun Zhang |
|
Pennsylvania State University, USA; Institute of Software at Chinese Academy of Sciences, China |