2:00 - 2:30 |
Software Traceability: Trends and Future Directions
Software traceability is a sought-after, yet often elusive quality in software-intensive systems. Required in safety-critical systems by many certifying bodies, such as the USA Federal Aviation Authority, software traceability is an essential element of the software development process. In practice, traceability is often conducted in an ad-hoc, after-the-fact manner and, therefore, its benefits are not always fully realized. Over the past decade, researchers have focused on specific areas of the traceability problem, developing more sophisticated tooling, promoting strategic planning, applying information retrieval techniques capable of semi-automating the trace creation and maintenance process, developing new trace query languages and visualization techniques that use trace links, and applying traceability in specific domains such as Model Driven Development, product line systems, and agile project environments. In this paper, we build upon a prior body of work to highlight the state-of-the-art in software traceability, and to present compelling areas of research that need to be addressed.
|
|
Jane Cleland-Huang, Orlena C. Z. Gotel, Jane Huffman Hayes, Patrick Mäder, and Andrea Zisman |
|
DePaul University, USA; University of Kentucky, USA; TU Ilmenau, Germany; Open University, UK |
|
2:30 - 3:00 |
Software Product Line Engineering and Variability Management: Achievements and Challenges
At the end of the second millennium, mobility was a hot research topic. Physical mobility of devices was becoming commonplace with the availability of cheap wireless cards, the first attempts to transform phones into personal do-it-all devices were beginning to appear, and mobile ad hoc networks were attracting a huge interest from many research communities. Logical mobility of code was still going strong as a design option for distributed systems, with the Java language providing some of the ready-to-use building blocks. In 2000, when we put forth a research “roadmap” for software engineering for mobility, the challenges posed by this dynamic scenario were many. A decade and a half later, many things have changed. Mobility is no longer exotic: we juggle multiple personal devices every day while on the move, plus we grab and update applications on a whim from virtual stores. Indeed, some trends and visions we considered in our original paper materialized, while others faded, disappeared, or morphed into something else. Moreover, some players unexpected at the time (e.g., cloud computing and online social networks) appeared on the scene as game changers. In this paper we revisit critically our original vision, reflecting on the past and peering into the future of the lively and exciting research area of mobility. Further, we ask ourselves to what extent the software engineering community is still interested in taking up the challenges mobility bears.
|
|
Andreas Metzger and Klaus Pohl |
|
University of Duisburg-Essen, Germany |
|
3:00 - 3:30 |
Engineering Big Data Solutions
Structured and unstructured data in operational support tools have long been prevalent in software engineering. Similar data is now becoming widely available in other domains. Software systems that utilize such operational data (OD) to help with software design and maintenance activities are increasingly being built despite the difficulties of drawing valid conclusions from disparate and low-quality data and the continuing evolution of operational support tools. This paper proposes systematizing approaches to the engineering of OD-based systems. To prioritize and structure research areas we consider historic developments, such as big data hype; synthesize defining features of OD, such as confounded measures and unobserved context; and discuss emerging new applications, such as diverse and large OD collections and extremely short development intervals. To sustain the credibility of OD-based systems more research will be needed to investigate effective existing approaches and to synthesize novel, OD-specific engineering principles.
|
|
Audris Mockus |
|
Avaya Labs Research, USA |